File

src/providers/model-loader/model-loader.ts

Description

File Name: model-loader.ts Version Number: v1.0 Author Name: Tobias Bester Project Name: Ninshiki Organization: Software Sharks Manual: Refer to the Ninshiki User Manual at https://github.com/OrishaOrrie/SoftwareSharks/blob/master/Documentation/User%20Manual.pdf

Update History:

Date Author Description

21/07/2018 Tobias Created provider

Functional Description: Handles all requests related to image classification and TensorFlow functions

Index

Properties
Methods

Constructor

constructor(alertCtrl: AlertController)
Parameters :
Name Type Optional Description
alertCtrl AlertController No

Controls the alert element

Methods

Private cropImage
cropImage(img: )

Called by the predictImage function, this crops the raw image pixel data to a smaller size so that it can be resized later

Parameters :
Name Optional Description
img No

The raw image pixel data as returned by tf.fromPixels

Returns : any

The raw pixel data of the cropped image

getResults
getResults()

A getter for resultPreds. Also processes the prediction results by calling processResultNames()

Returns : {}
Async loadModel
loadModel()

Loads the TensorFlowJS model from the specified URL by using the tf.loadModel. It then warms up the model by predicting on a blank image. This function only loads a model if one has not been loaded already

Returns : any
mapPredictions
mapPredictions(classPreds: )

Maps the predictions returned from the predictImage function to the corresponding class labels in the classes JSON file. Then the classes are sorted by decreasing likeliness and the classes with a likeliness lower than 0.001% are cut off

Parameters :
Name Optional Description
classPreds No

tf.Tensor.data The list of predictions returned by the predictImage function

Returns : {}

An array of JSON objects of the model classes and their associated prediction likeliness

Private modelHasLinks
modelHasLinks()

Checks whether the selected model contains catalogue links

Returns : any

True if the model has links, false if not

modelIsReady
modelIsReady()

Checks if the model is ready to be used

Returns : boolean

True if a TensorFlowJS model is loaded into memory. False if not

Async predictImage
predictImage(image: )

Performs a set of TensorFlowJS operations that result in a list of predicted classes of an image

Parameters :
Name Optional Description
image No

HTMLImageElement containing the image to be predicted

Returns : {}

A list of predictions where each element is the predicted likeliness of the corresponding model class

Private processResultNames
processResultNames()

Formats the class labels to a more readable format and slices off classes with a likeliness lower than 0.001%

Returns : void
Private sortPreds
sortPreds()

Called by mapPredictions in order to sort the classes by likeliness

Returns : void

Properties

Private model
model: tf.Model
Type : tf.Model
Default value : null

Reference to the TensorFlowJS Model instance that is loaded into memory

Public modelNumber
modelNumber: number
Type : number
Default value : 1

Determines which modelType object is selected to specify which model should be used

Public modelType
modelType: []
Type : []
Default value : [{ 'name': 'bramhope', 'url': 'https://storage.googleapis.com/testproject-ee885.appspot.com/mobilenet_model/model.json', 'classJson': 'classes.json', 'numClasses': 57, 'hasLinks': false }, { 'name': 'bramhope', 'url': 'https://storage.googleapis.com/testproject-ee885.appspot.com/bramhope_mobilenet_model/model.json', 'classJson': 'bramhope_classes.json', 'numClasses': 53, 'hasLinks': true }, { 'name': 'imagenet', 'url': 'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json', 'classJson': 'imagenet_classes.json', 'numClasses': 1000, 'hasLinks': false }]

Specifies the different models that can be used, including their name, the URL of the Google Storage bucket in which they are called from, the number of classes that it can predict from, and whether the model has catalogue links, as is the case with the Bramhope model. Also includes the classes JSON file with the model's corresponding class labels

Public resultPreds
resultPreds: []
Type : []
Default value : []

An array used to store JSON objects related to the classes that were predicted. Includes class name, class likeliness, and class catalogue links, if specified

import { AlertController } from 'ionic-angular';
import { Injectable } from '@angular/core';
import * as tf from '@tensorflow/tfjs';
/**
 * @ignore
 */
declare var require: any

/**
 * File Name:       model-loader.ts
 * Version Number:  v1.0
 * Author Name:     Tobias Bester
 * Project Name:    Ninshiki
 * Organization:    Software Sharks
 * Manual:  Refer to the Ninshiki User Manual at https://github.com/OrishaOrrie/SoftwareSharks/blob/master/Documentation/User%20Manual.pdf
 * Update History:
 * ------------------------------------------
 * Date         Author        Description
 * ------------------------------------------
 * 21/07/2018   Tobias        Created provider
 * ------------------------------------------
 * Functional Description:
 *  Handles all requests related to image classification and TensorFlow functions
 */

/*
  Generated class for the ModelLoaderProvider provider.

  See https://angular.io/guide/dependency-injection for more info on providers
  and Angular DI.
*/
@Injectable()
export class ModelLoaderProvider {

  /**
   * Reference to the TensorFlowJS Model instance that is loaded into memory
   */
  private model: tf.Model = null;
  /**
   * Specifies the different models that can be used, including their name, the URL of the Google Storage bucket in which
   * they are called from, the number of classes that it can predict from, and whether the model has catalogue links, as is the
   * case with the Bramhope model. Also includes the classes JSON file with the model's corresponding class labels
   */
  public modelType = [{
    'name': 'bramhope',
      'url': 'https://storage.googleapis.com/testproject-ee885.appspot.com/mobilenet_model/model.json',
      'classJson': 'classes.json',
      'numClasses': 57,
      'hasLinks': false
    },
    {
      'name': 'bramhope',
      'url': 'https://storage.googleapis.com/testproject-ee885.appspot.com/bramhope_mobilenet_model/model.json',
      'classJson': 'bramhope_classes.json',
      'numClasses': 53,
      'hasLinks': true
    },
    {
      'name': 'imagenet',
      'url': 'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json',
      'classJson': 'imagenet_classes.json',
      'numClasses': 1000,
      'hasLinks': false
  }];
  /**
   * An array used to store JSON objects related to the classes that were predicted. Includes class name, class likeliness,
   * and class catalogue links, if specified
   */
  public resultPreds = [];
  /**
   * Determines which modelType object is selected to specify which model should be used
   */
  public modelNumber = 1;

  /**
   * 
   * @param http Provides the service to handle HTTP requests
   * @param alertCtrl Controls the alert element
   */
  constructor(private alertCtrl: AlertController) { }

  /**
   * Loads the TensorFlowJS model from the specified URL by using the tf.loadModel. It then warms up the model
   * by predicting on a blank image. This function only loads a model if one has not been loaded already
   */
  async loadModel() {
    if (this.modelIsReady()) {
      console.log('Model is already loaded');
    } else {
      try {
        this.model = await tf.loadModel(this.modelType[this.modelNumber].url);
        (this.model.predict(tf.zeros([1, 224, 224, 3])) as tf.Tensor<tf.Rank>).dispose();
        console.log('Provider: Model is Loaded!');
        //this.modelStatus = 'Model loaded YAS QUEEN';
      } catch (err) {
        // Handle error
        let prompt = this.alertCtrl.create({
          title: 'Error loading model',
          subTitle: err,
          buttons: ['OK']
        });
        prompt.present();
      }
    }
  };

  /**
   * Checks if the model is ready to be used
   * @returns   True if a TensorFlowJS model is loaded into memory. False if not
   */
  modelIsReady() {
    // console.log('Checking modelIsReady');
    if (this.model == null) {
      return false;
    } else {
      return true;
    }
  }

  /**
   * Performs a set of TensorFlowJS operations that result in a list of predicted classes of an image
   * @param image   HTMLImageElement containing the image to be predicted
   * @returns   A list of predictions where each element is the predicted likeliness of the corresponding model class
   */
  async predictImage(image) {
    const predictedClass = tf.tidy(() => {
      const raw = tf.fromPixels(image, 3);
      const cropped = this.cropImage(raw);
      // 224,224 is the required size for the MobileNet model
      const resized = tf.image.resizeBilinear(cropped, [224, 224]);
      const batchedImage = resized.expandDims(0);
      const img = batchedImage.toFloat().div(tf.scalar(127)).sub(tf.scalar(1));
      const predictions = (this.model.predict(img) as tf.Tensor);
      return predictions;
    });

    const classId = (await predictedClass.data());
    return classId;
  }

  /**
   * Called by the predictImage function, this crops the raw image pixel data to a smaller
   * size so that it can be resized later
   * @param img   The raw image pixel data as returned by tf.fromPixels
   * @returns   The raw pixel data of the cropped image
   */
  private cropImage(img) {
    const size = Math.min(img.shape[0], img.shape[1]);
    const centerHeight = img.shape[0] / 2;
    const beginHeight = centerHeight - (size / 2);
    const centerWidth = img.shape[1] / 2;
    const beginWidth = centerWidth - (size / 2);
    return img.slice([beginHeight, beginWidth, 0], [size, size, 3]);
  };

  /**
   * A getter for resultPreds. Also processes the prediction results by calling processResultNames()
   */
  getResults() {
    this.processResultNames();
    return this.resultPreds;
  };

  /**
   * Maps the predictions returned from the predictImage function to the corresponding class labels in
   * the classes JSON file. Then the classes are sorted by decreasing likeliness and the classes with a
   * likeliness lower than 0.001% are cut off
   * @param classPreds  tf.Tensor.data  The list of predictions returned by the predictImage function
   * @returns   An array of JSON objects of the model classes and their associated prediction likeliness
   */
  mapPredictions(classPreds) {
    console.log('Mapping predictions...');
    const classesJson = require(`./classes/${this.modelType[this.modelNumber].classJson}`);
    const numClasses = classPreds.length;
    this.resultPreds = [];
    const linkExists = this.modelHasLinks();

    for (let i = 0; i < numClasses; i++) {
      // tslint:disable-next-line:triple-equals
      if (this.modelNumber == 2) {
        // Use if the classes json is in the plain format
        this.resultPreds[i] = {};
        this.resultPreds[i].name = classesJson[i];
        this.resultPreds[i].likeliness = (classPreds[i] * 100).toFixed(1);
      } else {
        // Used if the classes json is in the custom format
        this.resultPreds[i] = {};
        this.resultPreds[i].id = classesJson.classes[i].id;
        this.resultPreds[i].first = classesJson.classes[i].first;
        this.resultPreds[i].name = classesJson.classes[i].name;
        this.resultPreds[i].likeliness = (classPreds[i] * 100).toFixed(1);
        if (linkExists) {
          this.resultPreds[i].link = classesJson.classes[i].link;
        }
      }
    }

    this.sortPreds();
    this.processResultNames();
    return this.resultPreds;
  }

  /**
   * Called by mapPredictions in order to sort the classes by likeliness
  */
  private sortPreds() {
    this.resultPreds.sort((a, b) => {
      return b.likeliness - a.likeliness;
    });
  }

  /**
   * Checks whether the selected model contains catalogue links
   * @returns   True if the model has links, false if not
   */
  private modelHasLinks() {
    return this.modelType[this.modelNumber].hasLinks;
  }

  /**
   * Formats the class labels to a more readable format and slices off classes with a likeliness lower
   * than 0.001%
   */
  private processResultNames() {
    this.resultPreds.forEach((element, index) => {
      element.name = element.name.replace(/_/g, ' ');
      element.name = element.name.charAt(0).toUpperCase() + element.name.slice(1);

      if (element.likeliness < 5) {
        this.resultPreds = this.resultPreds.slice(0, index);
      }
    });
  }

}

result-matching ""

    No results matching ""